Search results for "NON-GAUSSIAN NOISE"
showing 4 items of 4 documents
Phase dynamics in graphene-based Josephson junctions in the presence of thermal and correlated fluctuations
2014
In this work we study by numerical methods the phase dynamics in ballistic graphene-based short Josephson junctions. The supercurrent through a graphene junction shows a non-sinusoidal phase-dependence, unlike a conventional junction ruled by the well-known d.c. Josephson relation. A superconductor-graphene-superconductor system exhibits superconductive quantum metastable states similar to those present in normal current-biased JJs. We explore the effects of thermal and correlated fluctuations on the escape time from these metastable states, when the system is stimulated by an oscillating bias current. As a first step, the analysis is carried out in the presence of an external Gaussian whit…
Analysis of soliton dynamics and noise induced effects on the superconductive lifetime in long Josephson junctions.
2013
The influence of various noise sources on the transient dynamics of long Josephson junctions (LJJ) is investigated in the presence of an oscillating bias current signal and a noise source with Gaussian or non-Gaussian (i.e. Cauchy-Lorentz or Lévy-Smirnov) probability distributions. These systems are computationally analyzed integrating the perturbed Sine-Gordon equation describing the phase evolution. We found evidence of noise induced effects on trends of the mean escape time (MET) from the superconductive metastable state, varying different system parameters, as the bias frequency, noise intensity and junction length. In particular, we find resonant activation (RA) and noise enhanced stab…
Transient dynamics in driven long Josephson junctions.
2013
The switching time from the superconductive metastable state of a long Josephson junction (LJJ)[1] is computationally analyzed in the framework of the perturbed sine-Gordon equation. The model includes an external bias current term and a stochastic noise source, i.e. a Lévy noise term. The effects of this noise on the mean escape time (MET) from the superconductive state are analyzed. The investigation is performed by considering a wide range of values of system parameters and different noise statistics: Gaussian, Cauchy-Lorentz and Lévy-Smirnov[2]. We found evidence of well known noise induced phenomena on the MET behavior, that is the noise enhanced stability (NES) and resonant activation…
Noise phenomena and soliton dynamics in long Josephson junctions
2013
In this work we computationally explore the transient dynamics of a noisy Josephson junction (JJ). Principal purpose is to investigate the behavior of the lifetime of the superconductive state as a function of the system and noise source parameters. The relations between the emerging phenomena and the evolution of the JJ order parameter φ, that is the phase difference between the macroscopic wave functions describing the superconducting condensate in the two electrodes, is deeply investigated. We focus our interest on the switching events from the superconducting metastable state, and in particular on the mean escape time (MET). In the used model, a long JJ can be represented by a string co…